Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-496021

RESUMEN

The immunity acquired after natural infection or vaccinations against SARS-CoV-2 tend to wane with time. Vaccine effectiveness also varies with the variant of infection. Here, we compared the protective efficacy of COVAXIN(R) following 2 and 3 dose immunizations against the Delta variant and also studied the efficacy of COVAXIN(R) against Omicron variants in a Syrian hamster model. The antibody response, clinical observations, viral load reduction and lung disease severity after virus challenge were studied. Protective response in terms of the reduction in lung viral load and lung lesions were observed in both the 2 dose as well as 3 doses COVAXIN(R) immunized group when compared to placebo group following the Delta variant challenge. In spite of the comparable neutralizing antibody response against the homologous vaccine strain in both the 2 dose and 3 dose immunized groups, considerable reduction in the lung disease severity was observed in the 3 dose immunized group post Delta variant challenge indicating the involvement of cell mediated immune response also in protection. In the vaccine efficacy study against the Omicron variants i.e., BA.1 and BA.2, lesser virus shedding, lung viral load and lung disease severity were observed in the immunized groups in comparison to the placebo groups. The present study shows that administration of COVAXIN(R) booster dose will enhance the vaccine effectiveness against the Delta variant infection and give protection against the Omicron variants BA.1.1 and BA.2.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-477043

RESUMEN

The recent emergence of highly mutated SARS-CoV-2 Omicron variant has debilitating effect on public health system of the affected countries worldwide. Currently India is facing third wave of COVID-19 pandemic and going through a severe crisis. Within short span of time, the variant has shown high transmissibility and capability of evading the immune response generated against natural infection and vaccination. The immune escape potential of Omicron is a serious concern and further needs to be explored. In the present study, we have assessed the IgG and neutralizing antibody (NAb) response in breakthrough individuals vaccinated with two doses ChAdOx1 nCoV-19 vaccine (n=25), breakthrough individuals vaccinated with two doses of BNT162b2 mRNA vaccine (n=8) and unvaccinated individuals (n=6). All these individuals were infected with Omicron variant. The IgG antibody activity in the sera of the ChAdOx1 nCoV-19 and BNT162b2 mRNA breakthrough individuals was comparable with S1-RBD, while it was lesser in BNT162b2 mRNA breakthrough individuals with N protein and inactivated whole antigen IgG ELISA. BNT162b2 mRNA breakthrough individuals showed moderate reduction in NAb GMTs compared to ChAdOx1 nCoV-19 against Alpha, Beta and Delta. However, 3-fold higher reduction was observed with omicron variant in BNT162b2 mRNA than ChAdOx1 nCoV-19. Apparently, Alpha variant was modestly resistant to the sera of unvaccinated individuals than Beta, Delta and Omicron. Our study demonstrated substantial immune response in the individuals infected with Omicron. The neutralizing antibodies could effectively neutralize the Omicron and other VOCs including the most prevalent Delta variant.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-477013

RESUMEN

SARS-CoV-2 Omicron variant is rampantly spreading across the globe. Animal models are useful in understanding the disease characteristics as well as properties of emerging SARS-CoV-2 variants. We assessed the pathogenicity and immune response generated by BA.1 sub-lineage of SARS-CoV-2 Omicron variant with R346K mutation in 5 to 6-week old Syrian hamsters. Virus shedding, organ viral load, lung disease and immune response generated were sequentially assessed. The disease characteristics of Omicron were found to be similar to that of other SARS-CoV-2 variants of concerns in hamsters like high viral replication in the respiratory tract and interstitial pneumonia. The infected hamsters demonstrated lesser body weight gain in comparison to the uninfected control hamsters. Viral RNA could be detected in nasal washes and respiratory organs (nasal turbinate, trachea, bronchi and lungs) till 10 and 14 days respectively. The clearance of the virus was observed from nasal washes and lungs by day 7. Neutralizing antibody response against Omicron variant was detected from day 5 with rising antibody titers till 14 days. However, the cross-neutralization titre of the sera against other variants showed severe reduction ie., 7 fold reduction against Alpha and no titers against B.1, Beta and Delta. This preliminary data shows that Omicron variant infection can produce moderate to severe lung disease and the neutralizing antibodies produced in response to Omicron variant infection shows poor neutralizing ability against other co-circulating SARS-CoV-2 variants like Delta which necessitates caution as it may lead to increased cases of reinfection.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-454511

RESUMEN

The recent emergence of the SARS-CoV-2 Variant of Concern, B.1.617.2 (Delta) variant and its high transmissibility has led to the second wave in India. BBV152, a whole-virion inactivated SARS-CoV-2 vaccine used for mass immunization in India, showed a 65.2% protection against the Delta variant in a double-blind, randomized, multicentre, phase 3 clinical trial. Subsequently, Delta has been further mutated to Delta AY.1, AY.2, and AY.3. Of these, AY.1 variant was first detected in India in April 2021 and subsequently from twenty other countries as well. Here, we have evaluated the IgG antibody titer and neutralizing potential of sera of COVID-19 naive individuals full doses of BBV152 vaccine, COVID-19 recovered cases with full dose vaccines and breakthrough cases post-immunization BBV152 vaccines against Delta, Delta AY.1 and B.1.617.3. A reduction in neutralizing activity was observed with the COVID-19 naive individuals full vaccinated (1.3, 1.5, 1.9-fold), COVID-19 recovered cases with full BBV152 immunization (2.5, 3.5, 3.8-fold) and breakthrough cases post-immunization (1.9, 2.8, 3.5-fold) against Delta, Delta AY.1 and B.1.617.3 respectively compared to B.1 variant. A minor reduction was observed in the neutralizing antibody titer in COVID-19 recovered cases full BBV152 vaccinated and post immunized infected cases compared to COVID-19 naive vaccinated individuals. However, with the observed high titers, the sera of individuals belonging to all the aforementioned groups they would still neutralize the Delta, Delta AY.1 and B.1.617.3 variants effectively.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21261716

RESUMEN

Immunization program against COVID-19 in India started with two vaccines; AstraZenecas ChAdOx1-nCov-19 (termed Covishield in India) and inactivated whole virion BBV152 (Covaxin); homologous prime-boost approach was followed. However, eighteen individuals, under the national program, inadvertently received Covishield as the first jab and Covaxin as the second. We compared the safety and immunogenicity profile of them against that of individuals receiving either Covishield or Covaxin (n=40 in each group). Lower and similar adverse events following immunization in all three groups underlined the safety of the combination vaccine-regime. Immunogenicity profile against Alpha, Beta and Delta variants in heterologous group was superior; IgG antibody and neutralising antibody response of the participants was also significantly higher compared to that in the homologous groups. The findings suggest that immunization with a combination of an adenovirus vector platform-based vaccine followed by an inactivated whole virus vaccine was not only safe but also elicited better immunogenicity.

6.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-450676

RESUMEN

The recent emergence of B.1.617 lineage has created grave public health problem in India. The lineage further mutated to generate sub-lineages B.1.617.1 (Kappa), B.1.617.2 (Delta), B.1.617.3. Apparently, the Delta variant has slowly dominated the other variants including B.1.617.1 (Kappa), B.1.617.2 (Delta), B.1.617.3. With this, World Health Organization has described this sub-lineage as variant of concern. The high transmissibility associated with Delta variant has led to second wave of pandemic in India which affected millions of people. Besides this, variant of concerns has been reported to show lower neutralization to several approved vaccines. This has led to breakthrough infections after completion of vaccination regimen. There is limited information available on the duration of protective immune response post-infection, vaccination or breakthrough infection with SARS-CoV-2. In this study, we have evaluated immune response in sera of the Covishield vaccinated individuals belonging to category: I. one dose vaccinated, II. two doses vaccinated, III. COVID-19 recovered plus one dose vaccinated, IV. COVID-19 recovered plus two doses vaccinated and V. breakthrough COVID-19 cases. The findings of the study demonstrated that the breakthrough cases and the COVID-19 recovered individuals with one or two dose of vaccine had relatively higher protection against Delta variant in comparison to the participants who were administered either one or two doses of Covishield. Prior vaccination results in less severe disease against subsequent infection provide evidence that both humoral and cellular immune response play an important role in protection.

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21259439

RESUMEN

BackgroundWe report the clinical efficacy against COVID-19 infection of BBV152, a whole-virion inactivated SARS-CoV-2 vaccine formulated with a Toll-like receptor 7/8 agonist molecule adsorbed to alum (Algel-IMDG). MethodsWe did a double-blind, randomised, multicentre, phase 3 clinical trial in 25 Indian hospitals to evaluate the efficacy, safety, and immunological lot consistency of BBV152. Healthy adults (age 18-98 years) randomised 1:1 using a computer-generated randomisation scheme received two intramuscular doses of vaccine or placebo administered four weeks apart. The primary outcome was laboratory-confirmed symptomatic COVID-19, occurring at least 14 days after the second dose. Secondary outcomes were efficacy in sub-groups for age (18-< 60 years and [≥] 60 years) and in participants with pre-existing stable medical conditions. We also evaluated safety, reactogenicity, and consistency of immune responses for three consecutive manufacturing lots. FindingsBetween November 16, 2020 and January 7, 2021 we recruited 25,798 participants who were randomised to BBV152 or placebo groups; 24,419 received two doses of BBV152 (n = 12,221) or placebo (n = 12,198). In a case-driven analysis, 130 cases of symptomatic COVID-19 were reported in 16,973 (0{middle dot}77%) participants with follow-up at least two weeks after the second vaccination; 24 occurred in the vaccine group and 106 in placebo recipients giving an overall vaccine efficacy of 77{middle dot}8% (95% CI: 65{middle dot}2-86{middle dot}4). Sixteen cases, one vaccinee and 15 placebo recipients, met the severe symptomatic COVID-19 case definition giving a vaccine efficacy of 93{middle dot}4% (57{middle dot}1-99{middle dot}8). Efficacy against asymptomatic COVID-19 was 63{middle dot}6% (29{middle dot}0-82{middle dot}4). BBV152 conferred 65{middle dot}2% (95% CI: 33{middle dot}1-83{middle dot}0) protection against the SARS-CoV-2 Variant of Concern, B.1.617.2 (Delta). BBV152 was well tolerated with no clinically or statistically significant differences in the distributions of solicited, unsolicited, or serious adverse events between vaccine and placebo groups. No cases of anaphylaxis or vaccine-related deaths were reported. InterpretationBBV152 was immunogenic and highly efficacious against symptomatic and asymptomatic COVID-19 variant associated disease, particularly against severe disease in adults. Vaccination was well tolerated with an overall incidence of adverse events observed over a median of 146 days that was lower than that observed with other COVID-19 vaccines. FundingThis work was supported and funded by Bharat Biotech International Limited and partly co-funded by the Indian Council of Medical Research. Clinicaltrials.gov: NCT04641481

8.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-447177

RESUMEN

Recently, multiple SARS-CoV-2 variants have been detected across the globe. The recent emergence of B.1.617 lineage has created serious public health problem in India. The high transmissibility was observed with this lineage which has led to daily increase in the number of SARS-CoV-2 infections. Apparently, the sub-lineage B.1.617.2 has slowly dominated the other variants including B1617.1, B.617.3 and B.1.1.7. With this, World Health Organization has described B.1.617.2 as variant of concern. Besides this, variant of concern B.1.351 has been also reported from India, known to showreducedefficacyfor many approved vaccines. With the increasing threat of the SARS-CoV-2 variants, it is imperative to assess the efficacy of the currently available vaccines against these variants. Here, we have evaluated the neutralization potential of sera collected from COVID-19 recovered cases (n=20) and vaccinees with two doses of BBV152 (n=17) against B.1.351 and B.1.617.2 compared to the prototype B.1 (D614G) variant.The finding of the study demonstrated a reduction in neutralization titers with sera of COVID-19 recovered cases(3.3-fold and 4.6-fold) and BBV152 vaccinees (3. 0 and 2.7 fold) against B.1.351 and B.1.617.2 respectively.Although, there is reduction in neutralization titer, the whole-virion inactivated SARS-CoV-2 vaccine (BBV152) demonstrates protective response against VOC B.1351 and B.1.617.2.

9.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-445424

RESUMEN

BackgroundConsidering the potential threat from emerging SARS-CoV-2 variants and the rising COVID-19 cases, SARS-CoV-2 genomic surveillance is ongoing in India. We report herewith the isolation of the P.2 variant (B.1.1.28.2) from international travelers and further its pathogenicity evaluation and comparison with D614G variant (B.1) in hamster model. MethodsVirus isolation was performed in Vero CCL81 cells and genomic characterization by next generation sequencing. The pathogenicity of the isolate was assessed in Syrian hamster model and compared with B.1 variant. ResultsB.1.1.28.2 variant was isolated from nasal/throat swabs of international travelers returned to India from United Kingdom and Brazil. The B.1.1.28.2 variant induced body weight loss, viral replication in the respiratory tract, lung lesions and caused severe lung pathology in infected Syrian hamster model in comparison, with B.1 variant infected hamsters. The sera from B.1.1.28.2 infected hamsters efficiently neutralized the D614G variant virus whereas 6-fold reduction in the neutralization was seen in case of D614G variant infected hamsters sera with the B.1.1.28.2 variant. ConclusionsB.1.1.28.2 lineage variant could be successfully isolated and characterization could be performed. Pathogenicity of the isolate was demonstrated in Syrian hamster model and in comparison, with B.1 variant was found more pathogenic. The findings of increased disease severity and neutralization reduction is of great concern and point towards the need for screening the vaccines for efficacy.

10.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-441559

RESUMEN

The emergence of new SARS-CoV-2 variants has been a serious threat to the public health system and vaccination program. The variant of concerns have been the under investigation for their neutralizing potential against the currently available COVID-19 vaccines. Here, we have determined the neutralization efficacy of B.1.1.28.2 variant with the convalescent sera of individuals with natural infection and BBV152 vaccination. The two-dose vaccine regimen significantly boosted the IgG titer and neutralizing efficacy against both B.1.1.28.2 and D614G variants compared to that seen with natural infection. The study demonstrated 1.92 and 1.09 fold reductions in the neutralizing titer against B.1.1.28.2 variant in comparison with prototype D614G variant with sera of vaccine recipients and natural infection respectively.

11.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-432136

RESUMEN

The emergence of SARS-CoV-2 variants has posed a serious challenge to public health system and vaccination programs across the globe. We have studied the pathogenicity and virus shedding pattern of the SARS-CoV-2 VOC 202012/01 and compared with D614G variant in Syrian hamsters. VOC 202012/01 could produce disease in hamsters characterized by body weight loss and respiratory tract tropism but mild lung pathology. Further, we also documented that neutralizing antibodies developed against VOC 202012/01 could equally neutralize D614G variant. Higher load of VOC 202012/01 in the nasal wash specimens was observed during the first week of infection outcompeting the D614G variant. The findings suggest increased fitness of VOC 202012/01 to the upper respiratory tract which could lead to higher transmission. Further investigations are needed to understand the transmissibility of new variants. One-Sentence SummarySARS-CoV-2 VOC 202012/01 infected hamsters demonstrated high viral RNA shedding through the nasal secretions and significant body weight loss with mild lung pathology compared to the D614G variant.

12.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-429480

RESUMEN

Vaccines remain the key protective measure to achieve herd immunity to control the disease burden and stop COVID-19 pandemic. We have developed and assessed the immunogenicity and protective efficacy of two formulations (1mg and 2mg) of ZyCoV-D (a plasmid DNA based vaccine candidates) administered through Needle Free Injection System (NFIS) and syringe-needle (intradermal) in rhesus macaques with three dose vaccine regimens. The vaccine candidate 2mg dose administered using Needle Free Injection System (NFIS) elicited a significant immune response with development of SARS-CoV-2 S1 spike region specific IgG and neutralizing antibody (NAb) titers during the immunization phase and significant enhancement in the levels after the virus challenge. In 2 mg NFIS group the IgG and NAb titers were maintained and showed gradual rise during the immunization period (15 weeks) and till 2 weeks after the virus challenge. It also conferred better protection to macaques evident by the viral clearance from nasal swab, throat swab and bronchoalveolar lavage fluid specimens in comparison with macaques from other immunized groups. In contrast, the animals from placebo group developed high levels of viremia and lung disease following the virus challenge. Besides this, the vaccine candidate also induced increase lymphocyte proliferation and cytokines response (IL-6, IL-5).The administration of the vaccine candidate with NFIS generated a better immunogenicity response in comparison to syringe-needle (intradermal route). The study demonstrated immunogenicity and protective efficacy of the vaccine candidate, ZyCoV-D in rhesus macaques.

13.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20248643

RESUMEN

BackgroundBBV152 is a whole-virion inactivated SARS-CoV-2 vaccine (3 {micro}g or 6 {micro}g) formulated with a Toll-like receptor 7/8 agonist molecule adsorbed to alum (Algel-IMDG). Earlier, we reported findings from a phase 1 (vaccination regimen on days 0 and 14) randomised, double-blind trial on the safety and immunogenicity of three different formulations of BBV152 and one control arm containing Algel (without antigen). Two formulations were selected for the phase 2 (days 0 and 28) study. Here, we report interim findings of a controlled, randomised, double-blind trial on the immunogenicity and safety of BBV152: 3 {micro}g and 6 {micro}g with Algel-IMDG. MethodsWe conducted a double-blind, randomised, multicentre, phase 2 clinical trial to evaluate the immunogenicity and safety of BBV152. A total of 380 healthy children and adults were randomised to receive two vaccine formulations (n=190 each) with 3 {micro}g with Algel-IMDG and 6 {micro}g with Algel-IMDG. Two intramuscular doses of vaccines were administered (four weeks apart). Participants, investigators, and laboratory staff were blinded to the treatment allocation. The primary outcome was seroconversion ([≥]4-fold above baseline) based on wild-type virus neutralisation (PRNT50). Secondary outcomes were reactogenicity and safety. Cell-mediated responses were evaluated. A follow-up blood draw was collected from phase 1 participants at day 104 (three months after the second dose). FindingsAmong 921 participants screened between Sep 7-13, 2020, 380 participants were randomised to the safety and immunogenicity population. The PRNT50 seroconversion rates of neutralising antibodies on day 56 were 92{middle dot}9% (88{middle dot}2, 96{middle dot}2) and 98{middle dot}3% (95{middle dot}1, 99{middle dot}6) in the 3 {micro}g and 6 {micro}g with Algel-IMDG groups, respectively. Higher neutralising titres (2-fold) were observed in the phase 2 study than in the phase 1 study (p<0.05). Both vaccine groups elicited more Th1 cytokines than Th2 cytokines. After two doses, the proportion (95% CI) of solicited local and systemic adverse reactions were 9.7% (6{middle dot}9, 13{middle dot}2) and 10.3% (7{middle dot}4, 13{middle dot}8) in the 3 {micro}g and 6 {micro}g with Algel-IMDG groups, respectively. No significant difference was observed between the groups. No serious adverse events were reported in this study. Phase 1 follow-up immunological samples at day 104 showed seroconversion in 73{middle dot}5% (63{middle dot}6, 81{middle dot}9), 81{middle dot}1% (71{middle dot}4, 88{middle dot}1), and 73{middle dot}1% (62{middle dot}9, 81{middle dot}8) of individuals in the 3 {micro}g with Algel-IMDG, 6 {micro}g with Algel-IMDG, and 6 {micro}g with Algel groups, respectively. InterpretationIn the phase 1 trial, BBV152 produced high levels of neutralising antibodies that remained elevated in all participants three months after the second vaccination. In the phase 2 trial, BBV152 led to tolerable safety outcomes and enhanced humoral and cell-mediated immune responses. The safety profile of BBV152 is noticeably lower than the rates for other SARS-CoV-2 vaccine platform candidates. The 6 {micro}g Algel-IMDG formulation was selected for the phase 3 efficacy trial. FundingThis work was supported and funded by Bharat Biotech International Limited. Clinicaltrials.gov: NCT04471519

14.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20210419

RESUMEN

BackgroundBBV152 is a whole-virion inactivated SARS-CoV-2 vaccine formulated with a TLR 7/8 agonist molecule adsorbed to alum (Algel-IMDG). MethodsWe conducted a double-blind randomized controlled phase 1 clinical trial to evaluate the safety and immunogenicity of BBV152. A total of 375 participants were randomized equally to receive three vaccine formulations (n=100 each) prepared with 3 g with Algel-IMDG, 6 g with Algel-IMDG, and 6 g with Algel, and an Algel only control arm (n=75). Vaccines were administered on a two-dose intramuscular accelerated schedule on day 0 (baseline) and day 14. The primary outcomes were reactogenicity and safety. The secondary outcomes were immunogenicity based on the anti-IgG S1 response (detected with an enzyme-linked immunosorbent assay [ELISA] and wild-type virus neutralization [microneutralization and plaque reduction neutralization assays]). Cell-mediated responses were also evaluated. ResultsReactogenicity was absent in the majority of participants, with mild events. The majority of adverse events were mild and were resolved. One serious adverse event was reported, which was found to be unrelated to vaccination. All three vaccine formulations resulted in robust immune responses comparable to a panel of convalescent serum. No significant differences were observed between the 3-g and 6-g Algel-IMDG groups. Neutralizing responses to homologous and heterologous SARS-CoV-2 strains were detected in all vaccinated individuals. Cell-mediated responses were biased to a Th-1 phenotype. ConclusionsBBV152 induced binding and neutralising antibody responses and with the inclusion of the Algel-IMDG adjuvant, this is the first inactivated SARS-CoV-2 vaccine that has been reported to induce a Th1-biased response. Vaccine induced neutralizing antibody titers were reported with two divergent SARS-CoV-2 strains. BBV152 is stored between 2{degrees}C and 8{degrees}C, which is compatible with all national immunization program cold chain requirements. Both Algel-IMDG formulations were selected for the phase 2 immunogenicity trials. Further efficacy trials are underway. Clinicaltrials.gov: NCT04471519

15.
Anup Agarwal; Aparna Mukherjee; Gunjan Kumar; Pranab Chatterjee; Tarun Bhatnagar; Pankaj Malhotra; B Latha; Sunita Bundas; Vivek Kumar; Ravi Dosi; Janak Kumar Khambholja; Rosemarie de Souza; Raja Rao Mesipogu; Saurabh Srivastava; Simmi Dube; Kiran Chaudhary; Subash S; S. Anbuselvi Mattuvar K; V Rajendran; A Sundararajaperumal; P Balamanikandan; R S Uma Maheswari; R Jayanthi; S Ragunanthanan; Sudhir Bhandari; Ajeet Singh; Ashok Pal; Anjali Handa; Govind Rankawat; Ketan Kargirwar; Joyce Regi; Darshana Rathod; Edwin Pathrose; Nirankar Bhutaka; Mayur H Patel; Rahul J Verma; Kamal Malukani; Shivani Patel; Apurv Thakur; Satish Joshi; Rashmi Kulkarni; Nilay N Suthar; Nehal M Shah; Hemang M Purohit; Cherry K Shah; Monila N Patel; Saket Shah; Smit H Shah; Tehsim Memon; Vishal R Beriwala; Kusum Jashnani; Fatema Ezzy; Simran Agrawal; Rakesh Bhadade; Atish M N; Tushar Madke; Vikash Kavishwar; Ramesh Waghmare; Nitin Valvi; B Thrilok Chander; A Vinaya Sekhar; Akhilesh Kumar Maurya; K Hemanth; K Nagamani; K Sudha; T Ravi Chandra; K Tushara Rao; J Vyshnavi; Rashmi Upadhyay; Shalini Bahadur; Rambha Pathak; Shikha Seth; Rakesh Gupta; Rita Saxena; Preksha Dwivedi; Reeni Malik; Deepti Chourasia; Jaya Lalwani; UM Sharma; JL Marko; Amit Suri; Vijay Kumar; Rajnish Kaushik; Parul Kodan; Bhabani Prasad Acharya; Kuldeep Kumar Gaur; Anubhav Gupta; Prerna Sachdeva; Shruti Dogra; Aikaj Jindal; M Joseph John; Avtar Singh Dhanju; Ranjana Khetrepal; Neeraj Sharma; Neetu Kukar; Divya Kavita; Rajesh Kumar; Rajesh Mahajan; Gurpreet Singh; Jaspreet Kaur; Raminder Pal Singh; Rajni Bassi; Swapneil Parikh; Om Shrivastav; Jayanthi Shastri; Maherra Desai; Shreevatsa Udupa; Varun A Bafna; Vijay Barge; Rajendra Madane; Sheetal Yadav; Sanjeev Mishra; Archana Bajpayee; M K Garg; G K Bohra; Vijaylakshmi Nag; Puneeth Babu Anne; Mohd Nadeem; Pallavi Singh; Ram Niwas; Niranjan Shiwaji Khaire; Rattiram Sharma; Mini p Singh; Naresh Sachdeva; Suchet Sachdev; Rekha Hans; Vikas Suri; L N Yaddanapudi; PVM Lakshmi; Neha Singh; Divendu Bhushan; Neeraj Kumar; Muralidhar Tambe; Sonali Salvi; Nalini Kadgi; Shashikala Sangle; Leena Nakate; Samir Joshi; Rajesh Karyakarte; Suraj Goyanka; Nimisha Sharma; Nikhil Verma; Asim Das; Monika Bahl; Nitya Wadhwa; Shreepad Bhat; Shweta Deshmukh; Vrushali Wagh; Atul Kulkarni; Tanvi Yardi; Ram S Kalgud; Purushottam Reddy; Kavitha Yevoor; Prashanth Gajula; Vivek Maleyur; Medini S; Mohith HN; Anil Gurtoo; Ritika Sud; Sangeeta Pahuja; Anupam Prakash; Parijat Gogoi; Shailja Shukla; D Himanshu Reddy; Tulika Chandra; Saurabh Pandey; Pradeep Maurya; Ali Wahid; Vivek Kumar; Kamlesh Upadhyay; Nidhi Bhatnagar; Nilima Shah; Mamta Shah; Tarak Patel; Ram Mohan Jaiswal; Ashish Jain; Shweta Sharma; Puneet Rijhwani; Naveen Gupta; Tinkal C Patel; Mahesh G Solu; Jitendra Patel; Yash R Shah; Mayur Jarag; Varsha Godbole; Meenakshi Shah; Rikin Raj; Irfan Nagori; Pramod R Jha; Arti D Shah; Gowtham Yeeli; Archit Jain; Rooppreet Kaur Gill; KV Sreedhar Babu; B Suresh Babu; Alladi Mohan; B Vengamma; K Chandra Sekhar; Srinivasulu Damam; K Narsimhulu; C Aparna; G Baleswari; Ravindranath Reddy K; P Chandrasekhar; Sunil Jodharam Panjwani; Pankaj J Akholkar; Kairavi Parthesh Joshi; Pragnesh H Shah; Manish Barvaliya; Milind Baldi; Ashok Yadav; Manoj Gupta; Nitin Rawat; Dilip Chawda; M Natarajan; M Sintha; David Pradeep Kumar; Fathhur Rabbani; Vrushali Khirid Khadke; Dattatray Patki; Sonali Marathe; Clyde D Souza; Vipul Tadha; Satyam Arora; Devendra Kumar Gupta; Seema Dua; Nitu Chauhan; Ajeet Singh Chahar; Joy John Mammen; Snehil Kumar; Dolly Daniel; Ravindraa Singh; Venkatesh Dhat; Yogesh Agarwal; Sohini Arora; Ashish Pathak; Manju Purohit; Ashish Sharma; Jayashree Sharma; Manisha Madkaikar; Kavita Joshi; Reetika Malik Yadav; Swarupa Bhagwat; Niteen D Karnik; Yojana A Gokhale; Leena Naik; Sangita Margam; Santasabuj Das; Alka Turuk; V Saravana Kumar; K Kanagasabai; R Sabarinathan; Gururaj Deshpande; Sharda Sharma; Rashmi Gunjikar; Anita Shete; Darpan Phagiwala; Chetan Patil; Snehal Shingade; Kajal Jarande; Himanshu Kaushal; Pragya Yadav; Gajanan Sapkal; Priya Abraham.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20187252

RESUMEN

ObjectivesConvalescent plasma (CP) as a passive source of neutralizing antibodies and immunomodulators is a century-old therapeutic option used for the management of viral diseases. We investigated its effectiveness for the treatment of COVID-19. DesignOpen-label, parallel-arm, phase II, multicentre, randomized controlled trial. SettingThirty-nine public and private hospitals across India. ParticipantsHospitalized, moderately ill confirmed COVID-19 patients (PaO2/FiO2: 200-300 or respiratory rate > 24/min and SpO2 [≤] 93% on room air). InterventionParticipants were randomized to either control (best standard of care (BSC)) or intervention (CP + BSC) arm. Two doses of 200 mL CP was transfused 24 hours apart in the intervention arm. Main Outcome MeasureComposite of progression to severe disease (PaO2/FiO2< 100) or all-cause mortality at 28 days post-enrolment. ResultsBetween 22nd April to 14th July 2020, 464 participants were enrolled; 235 and 229 in intervention and control arm, respectively. Composite primary outcome was achieved in 44 (18.7%) participants in the intervention arm and 41 (17.9%) in the control arm [aOR: 1.09; 95% CI: 0.67, 1.77]. Mortality was documented in 34 (13.6%) and 31 (14.6%) participants in intervention and control arm, respectively [aOR) 1.06 95% CI: -0.61 to 1.83]. InterpretationCP was not associated with reduction in mortality or progression to severe COVID-19. This trial has high generalizability and approximates real-life setting of CP therapy in settings with limited laboratory capacity. A priori measurement of neutralizing antibody titres in donors and participants may further clarify the role of CP in management of COVID-19. Trial registrationThe trial was registered with Clinical Trial Registry of India (CTRI); CTRI/2020/04/024775.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...